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Abstract. A gauge model Lagrangian on a three-dimensional lattice is proposed. Under 
certain coinditions equations of motion are reduced to the Backlund transformation of 
Hirota’s bilinear difference equation, which is solved by every solution ot the Kadomtsev- 
Petviashvili ( KP) hierarchy. Generation of soliton solutions given in the Casorati deter- 
minant form is discussed explicitly. 

1. Introduction 

Lattice models have been studied in various fields of physics. Lattice gauge theory 
provides a useful tool for investigating the non-perturbative nature of particle physics 
at short distances [l]. After the classic paper by Onsager [ 2 ] ,  solvable lattice models 
have been worked intensively in the field of statistical mechanics [3]. Moreover, recent 
studies of the Yang-Baxter relation revealed a close relation between various solvable 
statistical models on a two-dimensional lattice and knot theory [4] as well as conformal 
field theory [ 5 ] .  Integrable lattice models also appear in soliton physics, known as the 
Toda lattice or its generalisations [6]. 

We have investigated [7], in our previous papers, Hirota’s bilinear dzference 
equation (HBDE)  [8]. It is a nonlinear three-dimensional lattice equation which is 
completely integrable. We emphasise here that this equation can describe physical 
models in real three-dimensional lattice space in the sense that the three independent 
variables appear symmetrically. Moreover, it was pointed out [9] that this equation 
is satisfied by string amplitudes which determine the behaviour of elementary particles 
beyond the Planck scale. 

The purpose of our present paper is to derive a Lagrangian associated with this 
equation, in order to clarify the physical background on which the equation is based. 
Instead of studying H B D E  directly, however, we consider a linearised version of this 
equation by introducing gauge potentials [7]. Then it turns out that the corresponding 
Lagrangian is described by a lattice gauge model with a particular form of links. Under 
appropriate conditions the system appears symmetric under the exchange of fields 
defined on the lattice sites and the gauge potentials defined along the links. This 
remarkable feature, called duality, enables us to investigate the behaviour of solutions 
and shows the correlation between the fields and the gauge potentials. In section 3 
we will discuss this feature in some detail for soliton solutions expressed in the form 
of the Casorati determinant. 
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2. Lagrangian 

where a, P and y are constants. As was discussed in [7], this equation can be derived 
as a consistency condition to the following linear problem: 

( 2 )  V++(1, m, n )  = c*E=4(1, m, n )  

where 

v,= U = ( / ,  m, n ) ( e ' = - l ) u ; ' ( l ,  m, n )  

E ,  = U,( 1, m, n )  ea*='c1 U;'( 1, m, n )  

with 

(3) 

a+ = a l a 1  a- = a/am a, = a/an 

I =  A + P + v  P - A - v  
2 2 

m =  n = v  

and c, are constants related to CY and y by c+c- = - y / a .  In fact under the gauge 
condition 

U+( l ,m ,n )=  U - ( l , m , n + l ) =  U ( l , m , n )  (4) 

the coupled equation ( 2 )  is compatible if U(1, m, n )  satisfies ( 1 ) .  If U satisfies HBDE, 

4 is obtained by solving the second order linear difference equation 

V - V + + ( l ,  m, n )  = c+c-E+E-+(l, m, n ) .  ( 5 )  

$*(i = C z I e = l $  ( 6 )  

The remarkable feature of ( 2 )  is that it can be also rewritten as 

where 

$+= C ~ ~ ( l - e - ~ = ) f i : '  -6  e-dTTavfi;' (7) 

(iu, m, n )  = U ( / ,  m, n )  

and 

fi(1, m, n )  = +(l ,  m, n )  (8) 

under the gauge condition 

fi-(/, m, n - 1) = fi+(l, m, n )  = fi(1, m, n ) .  (9) 

In ( 6 )  the roles of the gauge potential U and the wavefunction + in ( 2 )  are exchanged. 
We called [7] this property the 'duality' between U and 4. It is easy to prove that the 
compatibility condition of ( 6 )  again requires fi(1, m, n ) ,  hence 4(1, m, n )  itself, to 
satisfy HBDE. Hence +( l ,  m, n )  solves HBDE if U(1, m, n )  does, and vice versa. 

Suppose U = U, is a solution of HBDE. Solving (5) with this gauge potential U , ,  
we find two independent solutions and 4;. If we use (PI = 0, as a gauge potential 
of ( 6 )  we again obtain two independent solutions, say 4,= U, and +;= U,". Since 
( 2 )  and ( 6 )  are identical, one of these solutions, say U;,  must be Ul . Similarly if we 
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use 4 ;  as a potential of (6) we obtain another pair of solutions, one of which is equal 
to U1. In this way (2) (or (6)) generates the auto-Backlund transformation as shown 
in the following diagram: 

A 

Our problem in this paper is to derive the Lagrangian which leads to the equation 
of motion given by (2) and (6). For this purpose let us see these equations in  detail. 
First, we notice that there are four equations which are linear in 4(1, m, n )  and 
c$( I, m, n ) .  Second, they are covariant under the local gauge transformation: 

U*(/ ,  m, n)+ V I ,  m, n)U*(I,  m, n) 4(4 m, n)-+ V I ,  m, n ) 4 ( l ,  m, n). (10) 

Therefore we consider a Lagrangian which contains four independent fields in bilinear 
form and is local gauge invariant. 

There are two alternative cases of the choice of time variable. One is to regard 
one of three variables as a discrete time variable. In fact, originally [8], HBDE was 
first derived as a discrete analogue of the two-dimensional Toda lattice. Another is to 
introduce the time variable t besides I ,  m and n. The most general form of the 
Lagrangian of this type is given by 

L = 2i 1 i +; ' (a,  -iAo,)4; + h i 4FtW,4f4f + L L  (11) 
J C t = l  J , k  % P = l  

from which the equations of motion for the field 4; are simply derived as 

Note that ,y = R, L, which are abbreviated as x = -, + in (13), correspond to the right- 
and left-moving components, respectively. 
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We will not consider the kinetic term LLr of the gauge fields in this paper, but 
simply ignore it so that the gauge potentials U ,  are not dynamical fields. The 
Lagrangian is still invariant under the local guage transformation of the type ( 1 0 ) .  We 
can fix U ,  either by hand or by solving them as functions of the 4. Instead, we can 
also fix U ,  such that ( 1 2 )  becomes compatible when we require 

4 ; x  = ($ ;x  ,y = R, L. ( 1 4 )  

Under this constraint ( 1 2 )  becomes ( 2 )  and ( 6 )  with 4;L = 4fL = 4, and 4;R = + f R  = $,, 
if the t dependence is ignored. Similarly we derive the same set of equations for 4;' 
as those for 4; under the same conditions. Therefore we conclude that the system 
described by the Lagrangian ( 1 1 )  is characterised by HBDE when the gauge potential 
U satisfies H B D E  and if there is no t dependence. 

The system described by the Lagrangian ( 1 1 )  is a lattice gauge model in which 
fields dl defined on the lattice site j interact with each other through the gauge potential 
defined along the links. I t  is a three-dimensional lattice which consists of layers of 
two-dimensional square lattice. Two adjacent layers couple each other with strength 
c ,  through particular links. If we do not consider the variable t ,  the Lagrangian 
describes a two-dimensional lattice which evolves along the discrete time variable n. 

3. Behaviour of solutions 

3.1. Solutions to the K P  hierarchy 

The general solution to the K P  hierarchy is known. It was shown by Miwa [lo] that 
every solution to the K P  hierarchy also satisfies HBDE.  In particular, the quasi-periodic 
solution to HBDE has been given explicitly as [ 9 ]  

where 8 and E are the Riemann theta function and the prime form, whereas w and 6 
are the first kind of Abel differential and some constants. The variables p ,  q, r are any 
three out of { p ,  ; j = 0, 1 , 2 , 3 , .  . . , CO} and are related to I ,  m, n and hence A, p, v of 
( I ) ,  by 

I = p + q + r + $  m = - q  - $  n = p + q + l .  ( 1 6 )  

If we substitute ( 1 5 )  into HBDE we obtain Fay's trisecant formula [ l l ] ,  which charac- 
terises the algebraic curves, along with 

Another important solution is the N-soliton solution. An explicit form of the 
N-soliton solution to the K P  hierarchy has been given by using a Wronskian [12]: 
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where 

a d cp"" are column vectors. The variables t ,  of the K P  hierarchy can be tra 
into those of HBDE by [ lo]  

Accordingly, c p j " '  are transformed into 

3.2. Soliton solutions in Casorati determinant form 

Denote one of the p, as s and write the corresponding cp! as cp,(s). Then the following 
relation is true: 

1 
z, 

c p ~ " + " ( s ) = - ( c p ~ " ~ ( s ) - ~ ~ n ' ( s -  1)) s E {P,}. (23) 

If we apply this to cpiM-II, v"-~',  . . . of (18) successively we obtain 
W[cp'O'(S), (p(I)(s), . . . , cp"-"(s)] 

1 
z, 

= -- W[cp'O'(S), cp"'(s), . . . , cp("*)(S), cp"-"(s - l ) ]  

=- 1 w[cpo'ys), cp(l)(s), , , . , cp(.y-3)(s), cp"-3'(s-- l ) ,  cp(h'-2'(s-  l)]  

Z f  

= (Ii) W[cp'O'(s), cp'O)(S-l), cp'l)(s-l), . . . ,cp '"-2 ' (s- l ) ] .  

We can continue this procedure until we get 
. N ( N - I ) / 2  (:) W[cp(S),cp(S-l) , . . . ,  cp(s-N+1)1. 

The determinant we have just obtained has the form of a Casorati determinant [13], 
a discrete version of the Wronskian. Since an overall constant is irrelevant in the 
bilinear form of equations, we define the N-soliton solution in the Casorati determinant 
form by? 

T N ( p ) =  W[cp(s+l),cp(s+2), . . . ,  cp(s+N)I (24) 
where we have replaced s by s+ N and rearranged the order of columns. 

* W e  learned from Professor R Hirota that he also has derived the same type of expression, from a talk 
presented at the conference held at Res. Institute of Mathematical Sciences (Kyoto University) on 22 April 
1988, and through private communication. 
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3.3. Generation of soliton solutions via duality 

The Lagrangian given by (11) is a coupled system of the wavefunctions 4 and the 
gauge potential U. We have seen in section 2 that they are related by duality. We 
would like to clarify this scheme through the examination of soliton solutions explicitly. 
For this purpose let us write down (2) explicitly: 

U ( I , m , n - l ) ~ ( I , m + l , n ) -  U ( I , m + l , n - l ) ~ $ ( l , m , n )  

- c - U ( I ,  m , n ) 4 ( I , m + l , n - 1 ) = 0 .  (26) 

It is convenient to use the symmetric variables p ,  instead of I, m, n, defined by (16). 
We are now going to show that (25) and (26) are satisfied by 

where ~ ~ ( p ,  q, r )  is the N-soliton solution of (24) and ( z p ,  zq, 2,) are the local coordin- 
ates associated with p ,  q, r, respectively, which appear in the expression of cp in (22). 
In this proof the following identities satisfied by cp, which hold for arbitrary three 
variables U, U, w in  { p , } ,  are useful: 

(28) (z, - z,)cp( U + 1, U + 1) = z,cp( U + 1, U )  - z,cp( U, U + 1) 

( z , - z t i ) c p ( u + l , u + l ,  w)+(z,-Z, , )cp(u,U+l ,  w + l )  

+(z , , . -z , )cp(u+l ,  U, w + l ) = O .  

The substitution of (27) into the left-hand sides of (25) and (26) yields 

LHS of (25) a ~ ~ ~ + l ( p + l , q , r ) ~ ~ ( p , q , r + l )  

- c _ ~ ~ ' ~ l ( p + l , q + l ,  r ) r h ( p , q ,  r + 1 ) .  (31) 

Let us consider (31) first. We want to know the difference of each factor in (31) 
from the expression of ~ , ~ ( p ,  q, r )  given by the Casorati determinant (24). As an 
example, we look at ~ ~ + l ( p ,  q +  1, r +  1). According to (24) it is given by 
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where 4 denotes the ( N  + 1)-component vector associated with the ( N  + 1)-solitons. 
Applying the identity (28) repeatedly, we see that this is equal to 

Here 6 is the ( N  + 1) x ( N  - 1) matrix of the form 

M = ( $ ( p ,  q, r, s + 2 ) ,  $(P, q, r, s + 3 ) ,  . . . ,$(P, q, r, s + ~ ) ) .  

A similar argument will show that factors produced by this procedure in front of each 
term of (31) are the same, and hence can be factored out from the expression. Thus 
we see that the right-hand side of (31) is proportional to 

w[@(p, q +  1, r +  1,s ) ,  +(P, q +  1, r +  1, s + l ) ,  MIW[(P(P+  1, q, r, s +  11, MI 

provided c- = ( zq - z,,)/( zq - z r ) .  A detailed inspection will reveal that the first two 
terms of (34) are exactly the Laplace expansion along the N-rows in the bottom of 
the determinant of the following ( 2 N  + 1) x (2N + 1) matrix: 

cp(p, 4, r + 1, s + 1) cp( p + 1, 9 + 1, r, s)  cp(P,  9 + 1, r, s + 1) 
c p ‘ ( p , q , r + l , s + l )  M’ cp’ (p+ l ,q+ l , r , s )  c p ’ ( p , q + l , r , s + l )  M’ i 0 0 c p ( p + l , q + l , r , s )  c p ( p , q + l , r , s + l )  M 

whereas the last term with the negative sign is the one along the N columns in the 
left of the same matrix, where cp’ and M‘ mean the ( N  + 1)th components of 4 and 
fi, respectively. In other words, the sum of the first two terms is equal to the negative 
of the last term. Therefore (34) vanishes. This ensures that (26) is satisfied by the 
soliton solutions of the Casorati determinant form when c- = ( z4 - z,,)/ ( z4 - z r ) ,  

(35) 
M 



3024 N Saitoh and S Saito 

Expression (25) will be shown to vanish mostly in parallel to the above reasoning. 
In this case the corresponding matrix is 

0 cP(p+l ,q , r , s )  cP(p,q,r,s+1) M 

d p , q , r + 1 , s + l )  M cP(P+l ,q , r ,s)  (P(P,9,‘9”+l) 
cP’(p, 4, r + 1, s + 1) M ’  cP’( P + 1, 4, r, s) cP’(P, 9, r, s + 1) M ’  

0 

if c+ is given by c+ = z , / zp ,  We have again obtained 

the same expression as (17). It is interesting that the combination of the coupling 
constants c+c- is given by the same cross ratio (36) of the parameters appearing in 
the Miwa transformation (21) irrespective to the explicit form of solutions, either the 
quasi-periodic or N-soliton solutions. 

3.4. Backlund transformation 

From the above consideration we convinced ourselves that (2) generates a N-soliton 
solution from a ( N  + 1)-soliton solution. This is a generalisation of the result shown 
in the case of the two-dimensional Toda lattice [ 141. Equation (2) can be also expressed 
as its dual equation (6), which enables us to deduce that (6) generates the ( N  + 1)- 
soliton solution from the N-soliton solution. Furthermore, from the discussion of the 
end of section 2, we can see that another solution of the linear equation (5) must be 
a ( N  + 2)-soliton solution when the potential U is the ( N  + 1)-soliton. Hence, corre- 
sponding to the diagram for the general case of the transformation, we obtain the net 
diagram of the Backlund transformation associated with the soliton solution: 

T N  

T N + l  

4?-7 T N t 2  

d - 3  7 .”I-’ 7 .  N + 3  

4. Discussion 

We have derived a lattice model Lagrangian (11) in three dimensions which is gauge 
symmetric and is integrable under appropriate conditions. This model describes 
two-dimensional square lattices which also couple with each other along their normal 
direction through the interaction characterised by the two coupling constants G .  The 
equation of motion (2) for the fields 4 possesses dual symmetry, i.e. they are symmetric 
under the exchange of the roles played by the matter fields and the gauge potential 
fields. In particular this remarkable property of the equations proves that all of the 
fields 4, 6 and U are characterised by a single nonlinear equation, i.e. the HBDE,  when 
the condition (14) is fulfilled. Equations (2) and (6) themselves provide a scheme of 
an auto-Backlund transformation and enables us to solve H B D E  successively. 
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The H B D E  is solved by every solution of the KP hierarchy, an  infinite series of 
integrable soliton equations. There exists a transformation, i.e. the Miwa transforma- 
tion (21), which maps solutions of the K P  hierarchy to those of HBDE. Employing this 
transformation, we constructed explicitly the quasi-periodic solutions and the N-soliton 
solutions which satisfy HBDE. The Backlund transformation was confirmed explicitly 
in the case of soliton solutions and we have found that (2) and (6) generate ( N  - 1)-  
and ( N +  1)-soliton solutions, respectively, from the N-soliton solution. This is a 
particular example of the fact known in the theory of the KP hierarchy [lo] that an  
addition of a soliton to a T function generates a Backlund transformation. In  the 
quasi-periodic solution this amounts to subtracting or adding one of the p, to the T 
function given by (15). 

To conclude our discussion let us see some properties of the system described by 
the Lagrangian (11). First of all, this Lagrangian possesses the gauge symmetry 
represented by (10). The origin of this symmetry lies on the fact that the field 4 always 
appears together with the gauge potential U in the Lagrangian, as we can readily see 
by the substitution of the expression for the link operators (13) into the Lagrangian. 
The dual symmetry between I#I and U in ( 2 )  or (6) follows again to this fact provided 
4 satisfies (14), U satisfies (4) and  the time dependence is irrelevant. 

This symmetry induces a strong correlation between these two fields. In the case 
of soliton solutions the N-soliton potential generates N * 1 solitons. The change of 
the fields by either subtaction or addition of one siliton will not cause a big difference 
of behaviour between the gauge potential and matter field in as much as the system 
contains many solitons. It will be quite interesting if one could find lattice systems 
described by such a Lagrangian. 

Appendix 

In this appendix we prove (34) starting from (33); 
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The first two terms of this expression can be further rewritten as 

If we apply (28) to the second term it cancels the last term. Also applying (28) and 
then (29) to the first term we obtain 
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